|
Distributional semantics is a research area that develops and studies theories and methods for quantifying and categorizing semantic similarities between linguistic items based on their distributional properties in large samples of language data. The basic idea of distributional semantics can be summed up in the so-called Distributional hypothesis: ''linguistic items with similar distributions have similar meanings.'' ==Distributional Hypothesis== The Distributional Hypothesis in linguistics is derived from the semantic theory of language usage, i.e. words that are used and occur in the same contexts tend to purport similar meanings. The underlying idea that "a word is characterized by the company it keeps" was popularized by Firth. The Distributional Hypothesis is the basis for Statistical Semantics. Although the Distributional Hypothesis originated in Linguistics, it is now receiving attention in Cognitive Science especially regarding the context of word use. In recent years, the distributional hypothesis has provided the basis for the theory of similarity-based generalization in language learning: the idea that children can figure out how to use words they've rarely encountered before by generalizing about their use from distributions of similar words. The distributional hypothesis suggests that the more semantically similar two words are, the more distributionally similar they will be in turn, and thus the more that they will tend to occur in similar linguistic contexts. Whether or not this suggestion holds has significant implications for both the data-sparsity problem in computational modeling, and for the question of how children are able to learn language so rapidly given relatively impoverished input (this is also known as the problem of the poverty of the stimulus). 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Distributional semantics」の詳細全文を読む スポンサード リンク
|